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Along with analytical methods [1], the plane equilibrium states of thin elastic rods are also calculated with numerical 
methods based on reducing nonlinear boundary problems to Cauchy problems [2] or to a sequence of linear boundary problems 

[1, 3]. 
Sequential approximations have been constructed [3] from equations whose nonlinear part is taken equal to its value 

in the previous approximation. A range of loads has been given for which the sequence of approximations converges. 
Popov [1] constructed sequential approximations by linearizing the equilibrium equations for a rod and solving the 

linearized difference equations directly. The linearized difference equations cannot satisfy the stability conditions for calculating 
them by "ordinary" trial-and-error methods [4]. Popov [1] used non-monotonic steps [5]. If the linearized difference equations 
are solved by direct methods, the resultant sequence of approximations might not converge - for example if the same load 
can correspond to several states, so that the approximations oscillate between them. This deficiency can be compensated only 
by selecting appropriate initial approximations. 

The method of local variations [6] can be used to compute the equilibrium shape of thin rods. The sequences of 
approximations obtained from this method converge for any load; however convergence can be very slow and can require 

significant computational resources. 
The algorithm,we present below is designed to solve for the plane equilibrium shapes of thin elastic rods for ndead" 

loads. It can solve for equilibrium states of "following" loads only in the case where the "following" loads can be obtained as 
the limit of a sequence of solution for "dead" loads. 

This algorithm computes sequential approximations with monotonically decreasing values of the potential energy. 
Therefore only those equilibrium states are obtained in which the extremum potential energy from bending and external forces 

is not a maximum. 
The algorithm utilizes a variational-difference formulation of the problem. Sequences of approximations are constructed 

by minimizing a quadratic functional that approximate the potential energy from bending and external forces. These 
minimization variants can be interpreted as the construction of sequences of approximate solutions to linearized difference 
equations. In these sequences, sums of the variances and sums of the moments of the variances of the linearized equations are 
equal to zero in a sequentially expanding region. Hence the name - the method of self-extinguishing variances. 

l 
Fig. 1 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 142-151, March-April, 
1994. Original article submitted May 13, 1993. 

0021-8944/94/3502-0297512.50 �9 1994 Plenum Publishing Corporation 297 



If the magnitudes of the variations in the target functions are small enough, the decrease in the quadratic functional 

that approximates the potential energy of bending and external forces also tends to decrease the potential energy. This allows 
sequences of approximations to be constructed whose convergence is controlled by the fact that they correspond to 

monotonically decreasing energy sequences. Numerical experiments show that the conditions for calculating the approximations 
with monotonically decreasing potential energies are established after several iterations, even without introducing any limitations 

on the magnitude of the variations of the target functions. 

1. P R O B L E M  F O R M U L A T I O N  

The equation for the equilibrium plane states of thin rods [1] are written in the form 

d H  d F  
ds  " pcos~o, ds  - p s in~o ;  (1.1) 

d s  - H c o s  ~o - F sin ~,, M = - D  ~ s  - d s  ) '  (1.2) 

d x  d y  
d s  - cos Io, "~s = sin 7', (1.3) 

where p is the surface load; F and H are the components of the load vector; M is the bending moment; D = D(s) is the 
bending rigidity of  the rod; and ~o(s) and ~o0(s) are the inclination angles of the rod in the deformed and undeformed states (Fig. 

i). 
We can set 

~ ( o )  = x(O) = y ( o )  = o.  (1.4) 

without loss of generality. For boundary conditions on ~ and s we set 

[ a M  + (1 - a)~o Is., = Y, (1.5) 

where o, equals zero or unity and 3, is a specified quantity. 
We limit ourselves to the class of problems where the magnitudes of H and F are specified at s = l; consequently H(s) 

and F(s) can be found by integrating Eq. (1.1). We call the load "dead" if H and F do not depend on ~,(s) and "following" if 

they do. For "dead" loads, the problem solution reduces to iterating Eqs. (1.2) for boundary conditions (1.4) and (1.5). The 
coordinates x and y of  the rod axis are found by integrating Eqs. (1.3) for conditions (1.4). 

The solution of the problem for "dead" loads corresponds to the extremum of the functional 

= f - 2(F cos ~a + H s in ~p)]ds + ay~o( l )  (1.6) 

in the class of functions ~ which satisfy Eqs. (1.4) and (1.5) if r = 0. The value of �9 is the potential energy from bending 
and external forces. 

We divide the rod axis into N intervals with the nodes s i = (i - 1)h (i = 1 ... . .  N + 1, h = //N) and replace the 
functional (1.6) with the f'mite-difference form 

+ ,  ffi Z (1.7) 

where 

T~+V2 = F~*t/2cos ~*V2 + H~*v2sin ~+v2 '  
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1 1 I 
~o,§ = ~(to, + ~o,.a). F . V 2  = i ( F  + F~§ ~ §  = ~(H + H,§  (1.8) 

IO~ = O , $ o u +  ~ = y ,  if  a = O. 

Below we examine the problem of constructing sequences of  approximations with monotonically decreasing magnitudes 

of the functional (1.7). 

2. ELEMENTS OF  M E T H O D  TO CONSTRUCT SEQUENCES OF APPROXIMATIONS 

Let ~i(i = 1, 2 .. . . .  N + 1) satisfy the conditions (1.8). By replacing 'ai in Eq. (1.7) by ~ i  + Ui and by assuming that 

COS 

/'ti +Ui+l  /ti + //i+i 
sin 2 - 2 ' 

Ui+Ui+ 1 l(Ui+lgi+l] 2 
2 

(2.1) 

we obtain a quadratic functional relative to u i 

h ~ r D (u , -u ,§ 2 
,v "  = ,~'(r + ~ ,-, L " v ~ l - - - ~ - - - J  + Z 7",§ + ",§ - 

~§ u, + ",§ + 2~247 ~,§ ~ ,_  ~o., + ~o (",§ _ ' 9 ]  + , , r " . . , ,  
h 

(2.2) 

where 

T,§ = Fi*v2c~ ~,§ + I'fi.v2sin ~,§ ~ §  = /'/~*V2 c~ ~,+V2 -- F~§ ~'i§ 
u t = 0 ,  UN§ 1 = 0 ,  if  a = 0 .  

(2.3) 

Here 

Under the conditions (2.3), the extremum of the functional (2.2) corresponds to the solution to the system of equations 

a,u~_ a + 2b, u, + qu~§ = f,,  t = 2, 3 . . . . .  N ,  

u x = O, UN+ 1 = O, if  a = O, (2.4) 

dNUN + dN+IUN+I + fN+l = 0, if a = 1. 

1 h -  1 h -  
,,, = _ ~ n, -v2 + ~ r , - w ,  q : _ ~ n , . w  + ~ r - w ,  

1 h - 
2b, = - ~ (n,_ w + o , .v , )  + ~ (r,_v2 + r ,§ 

h - - -  1 o 0 
L = - i ( Q - w  + Q,.v,) + ~ tn-v, (~,  - ~, - ,  - ~o, + ~,,_,) - 

n , . v t ~ , .  ' _ ~, _ ~,o., + ~,,b l, t = 2, 3 . . . . .  ~v; 

1 h ~  1 h -  
a. = - -~ D~,+v, + i T"+w'  a N + ,  = ~ n,,+ w + -~ r , , . v 2 ,  

h -  I 
IN" = - 7 Q , -v ,  + ~ nN+.(~, , . .  - ~ -  - G . ,  + G )  + ~'- 

(2.5) 

(2.6) 

The quantities fi (i = 2 . . . . .  N + 1) are variances in the extremum conditions of  the functional (1.7) when ~i is replaced by 

@i in the functional. The process of  calculating solutions to Eqs. (2.4)-(2.6) by "ordinary" trial-and-error methods [4] can be 

unstable. Analogous difference equations (2.4-2.6) [1] have been solved by nonmonotonic trial-and-error methods [5]. 
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In our methods, sequences of approximations, which minimize the functional (1.7) are constructed from sequences of 

approximate solutions 1~ i ( i  = 1 ,  2 . . . . .  N + 1) to Eqs. (2.4), which satisfy the following conditions: 

where equality is possible only if 

q,,,(~,) >_- ~ , , (~ ,  + ~,), (2.7) 

7~ z-- 0, t =  2 , . . . , N +  1; 

the equalities G i = 0 (i = 2 . . . . .  N + 1) are possible only when fi = 0 (i = 2 . . . . .  N) and fN+l = 0 if c~ = 1; i.e., in the 

case when 1) ~i(i = 2 . . . . .  N + 1) satisfies the extremum conditions for the functional (1.7); 2) the number of  operations to 

calculate 0 i ( i  = 1,  2 ... . .  N + 1), which belong to one grid node does not depend on the number of grid nodes; and 3) 

I~il ~< A , l =  1 ,2  . . . . .  N +  1 (2.8) 

where A is a specified number. 

We note that xI'"(~ i + Qi)- However, the difference in the quantities ~/"(~i + 0i) and xI,'(~ i + Qi) are determined by 

the error (2.1) in the approximation of the sines and cosines. Therefore, by specifying A in (2.8) small enough, this difference 

can be made so small that the inequality 

w'(~,)  >-- w ' (~ ,  + ~,). 

follows from (2.7). This allows our algorithm to construct sequences of approximations with monotonically decreasing values 

of the functional (1.7). 

Numerical calculations show that conditions for calculating approximations with monotonically decreasing values of 

the functional (1.7) are established after several approximations, even without introducing the limitation (2.8). Therefore this 

limitation can be introduced only to accelerate convergence of the sequence of approximations. Here it should be kept in mind 

that introducing the limitation (2.8) can also slow convergence. 

Only one equilibrium state can be found for any specified initial approximation with a given value of  A in (2.8). 

Different equilibrium states, which correspond to the same loads, can be found by considering different initial approximations. 

In some case different equilibrium states are obtained for the same initial approximations, but with different values of  A in (2.8) 

or if the rod is divided into a different number of elements. 

3. APPROXIMATION A L G O R I T H M  W I T H  A SPECIFIED 

ANGLE OF R O T A T I O N  AT T H E  END OF THE ROD 

If  an angle of  rotation is specified at the end of the rods s = l, then u 1 = uN+ 1 = 0 in Eqs. (2.4). Therefore the 

iterative calculation reduces to calculating u i, i = 2, 3 . . . . .  N. 

Numerical calculations show that the approximations usually converge faster, if two types of  iterations are alternated. 
One of  them is based on constructing approximate solutions to Eq. (2.4) in the form 

= o ,  z = 1 ,  2 ,  . . . ,  , v  + 1 ,  = = = = o ,  

u~*, = u~*-l, + u~*), h~,, = yCk, + fl,*,Si ' i = 2 . . . . .  k + 2, 

u~ * ) =  u~ * ) =  0 , / =  k + 3 . . . . .  N +  1, k =  1, 2 . . . . .  N -  2, 
(3.1) 

where 3 ,(k) and/3~) are determined sequentially by the conditions for the extremum of the functional (2.2) after u i in the 

functional is replaced by ui (k) for k = 1, 2 . . . . .  N - 2 .  These conditions can be written as variation equations 

k + 2  

~ ,  Z!k)5U! , = O, Z! = auC~)i i-s + 2bu(k~i i + cuCk)i i+l -- f i '  
i=2 (3.2) 

k = l ,  2 . . . . .  N - 2 .  

From Eqs. (3.1) and (3.2) it follows that 
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*§ *+2 

2z,*,--_o, 
' . . . .  ( 3 . 3 )  

4=2 i=2 

Equations (3.3) mean that the sums of the variances of Eqs. (2.4) and their moments are zero; therefore the sequences (3.1) 

of the solutions to Eqs. (2.4) correspond to a sequence of variances of these equation with zero sums of the variations and 

moments in a sequentially expanding region. 

Obviously, Eqs. (3.3) can be written in the form 

k + l  

z1 '1 ' -  o, 41' = o, (4 * '  - . + - -  o, 
i - 2  

*+1 (3.4) 

- zi )~i + = O , k =  2, N -  2. '~,.,.2,.~k + 2 ...~ 

From Eqs. (3.4) it is easy to find that the coefficients of ~:(k) and/3 (k) in the equations 

{*) (J,) Z~,~) ~*~,c~> + z, , /3 + = O, 
EC2"r (*, + L~*'/~(*, + Z~') = 0, k = 1, 2 . . . . .  N - 2 (3.5) 

are related to the coefficients of ,,/(k-l) and •(k-l) by the recurrence formulas: 

E(I ') = c a + a 3 + 2(b 2 + b3), /_,(i 1~ = (2b 2 + a3)s 2 + (2b 3 + C2)S 3, 

~'~ = (2b 2 + c , )q  + (2b 3 + a~)s v 

i,(21) = (2b2s 2 + a3ss)s 2 + (c2s 2 + 2b3sa)s 3, 

x~ '~ = - (&  + &) ,  z~" = - (As~  + &sp,  
d : '  = e',*-'~ + c,., + a,.~ + 2b,+~, 
L(, *> = a] * -u  + a,+2s,+ , + (c,+, + 2b,+2)s,+ 2, 
~*~ = ~*-1'  + c,..s,+, + (2b,+, + ~,,+ps,.,, 

L(*)  = L (*-1} -.t- ( . /k+2Sk+lSk+2 4" ( C ~ + l S , +  1 "1" 2b,+2sk+2)s,+ 2, 2 ~ 2  
= - (*). 

xc, *~ a , .~ ( r  +/~ '*-"s , . , )  - / , . ~ ,  z :  ~ = z, ~,+~. 

(3.6) 

From the dependence of @k) on s i in Eq. (3.1) we find 

(;'~*~ - /'I *>} ~ - :~,.1~,21 I 
h ,.~ LFD'§ l/~*, 7, " + -41 7..v2(i,~,~ + " , . t  J ]  >~7~ (o .  - r . a )Ch~b  ~, (3.7) 

where 

According to Eq. (3.7), if 

D. = minDi+t/2; T. = max([F,§ + IH,§ 
"(k)  �9 (k) = max u, (i = 2, N). 

i 

O .  

h ~ < - -  T . t  (3.8) 

and if u i is replaced by ui(k) in Eq. (2.2), then the functional (2.2) will be a positive definite quadratic from relative to 7 (k) and 

j8 (k). Therefore 3, (k) and :/(k) (k = 1, 2 . . . . .  N - 2) are calculated sequentially according to Eqs. (3.5) and (3.6), and the 
equations 

u (k) = 0 (t  = 1 , 2 ,  N , k  = 1 , 2 ,  N -  2) 

are possible only if fi = 0 (i = 1, 2 . . . . .  N), i.e., when ~i (i = 1, 2 . . . . .  N) corresponds to an extremurn of  the functional 
(1.7). Otherwise the sequences of approximations (3.1) correspond to a monotonically decreasing sequence of  values of the 
functional (2.2): 
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TABLE 1 

N 

40 
80 
120 

-6,2447(0,1293; -0,2494) 
-6,2667(0,1303; -0.2499) 
-6.2708(0.1304: -0.2501) 

Shape 

I 5 
�9 ' (x:y) 

--7,1400(0.0821; --0,5995) 
--7,1536(0,0827; --0,5917) 
--7.1565(0.0825; -0.5919) 

6 

51,7565(--0,5483; --0,5641) 
51,7402(--0.5484; --0,5642) 
51.7371(--0.5496: --0.5642) 

V'(~,) = V " ( ~ , )  * W"(~,  + u~ 1~) > ~ " ( # ,  + uC2)~ > . . . >  W"(~,  + u('~-2)~ (3.9) 

The greatest interest in the ui00 is in the Ui (N'2), because the minimum of the functional (2.2). The ui(N-2) should be 

calculated after forming arrays of  3, (k) and B(k) (k = 1, 2 . . . . .  N - 2) by using the formulas 

uCN-2) ---- ]/(N-2), ~ fl(N-2) 
N = ~'N + flNSN' ~'N fiN 

u(N-2) 

i = N -  1 , . . . , 3 ,  

u~ "-2) = :,~ + ~ s , .  

(3.10) 

The number of  operations in calculating 3,(k) and /~(k) (k = 1, 2 . . . . .  N - 2) from Eqs. (3.5) and (3.6) and in 
calculating ui (lq-2) (i = N - 1 . . . . .  2) from Eqs. (3.10) on one node of the grid is independent of  the number of  grid nodes. 

In a calculation without the limitation (2.8), the resultant ui (N-2) are used as fii, the quantities ~i are replaced by r + 
Qi, and then the subsequent iterations are calculated. 

If the limitation (2.8) is introduced, it can be formulated in the form of conditions on .y(k) and B(k), for example. 

rnaxlh (k' = max ( I t  (*) + fl(*)s2[ Irc*) + fl(*'s,+2[ ) <~ e, e = A / N .  i 
2 ~ i ~ k §  

(3.11) 

In this case, the process of  forming the arrays of ,y(k) and ~(k) (k = 1, 2 . . . . .  N - 2) stops when the conditions (3.11) are no 
longer fulffiled. Then the ui (k-l) are calculated from Eqs. (3.10), where N - 1 is replaced by that value of k at which the 

conditions (3.11) are no longer fulfilled. The resultant ui (k-l) are used for the fii, and the quantities ~i are replaced by 'Pi + 
~i; then the subsequent iterations are calculated. 

In the above iteration variant, the region where the variances of Eqs. (2.4) are self-equilibrating gradually expands 

along increasing node numbers of  the grid. An analogous iteration variant can be formulated in which the region where the 

variances of Eqs. (2.4) are self-equilibrating gradually expands along decreasing node numbers. 

Numerical experiments show that alternation of these iteration variants can substantially accelerate the convergence 
of the approximations. 

4. A P P R O X I M A T I O N  A L G O R I T H M  IF  A BENDING M O M E N T  
IS SPECIFIED AT T H E  END OF T H E  ROD 

Problems in which a bending moment is specified at the end s = l differ from those with a rotation angle specified 
at s = l in See. 3 in that the condition UN+ 1 = 0 is replaced by the equation 

dNu.+~ + d.+~u.+~ + "f~,.l = O. (4.1) 

In this case convergence of  the approximations can also be accelerated by alternating between two iteration variants. 

In the variant where the region of self-equilibrating variances expands along increasing node numbers, fii(i = 1, 2 . . . . .  
N) is calculated as in See. 3, and UN+1 is calculated from Eq. (4.1). 

In the variant where the region of self-equilibrating variances expands along decreasing node numbers in the ease of 
Eq. (4.1), the approximate solutions to Eqs. (2.4) are constructed in the form 
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4-" 
0,5-'12 

*ow.  I ~ ~ \ ~  _ _ 

/ " / "  ~,'/Y, x /"  ~'.,.?'o~ *'I \ ~" \ \ 

I .3> \ ,r174 

Fig. 2 

u(O) -1 u(O) O, t = N, N - 1, 1, N§ = -- fN+ld~+l ' , = .... 

u~k) = U[k-,) + U~k), ~[k) = y(k), I = N . . . . .  N + I -- k, 

u~ k ) - -  u~ k ) - -  0 ,  t =  N -  k , N -  k -  1 . . . . .  1,  k - -  1 , 2  . . . . .  N -  I ,  

(4.2) 

where 7 (k) is determined sequentially for k = 1, 2 . . . . .  N - 1 by the extremum condition on the functional (2.2) after u i in 

it is replaced by ui (k). 
It is not difficult to show that the sequence (4.2) of approximate solutions to Eqs. (2.4) corresponds to a sequence of 

variances of these equations with a zero sum in a gradually expanding region. The quadratic part of  the functional with respect 

to ui (k) can be written as 

h 2 N 
a = - ~  [ O u §  l - u u ) + Ou_~+~,2(u~)) 2 + +va(ui + 

Under the condition (3.8), it is obvious that 

1 3 "(k) 2 1 --  ,~ , , .  (,~). (k) 1 .j 
A >~ ~ {[2D. - T . h ( l -  ~ h ) l ( u  N ) - 2 ( D .  + 4 J . n ) u N  U.,~+. '+ ( D .  - - - T  h'~t:(k)  ~2, >~ 0, 

4 * / k U N §  [ 

which can be equal m zero only ifuN(k) = tiN+l (k) = 0. Then, under the condition (3.8) and after u i is replaced by ui(k) in 

the functional (2.2), the functional will become a quadratic polynomial in 7 (k) with a positive coefficient of  (,y(k))2. Therefore 

we calculate the ,y(k), and the sequence (4.2) corresponds to monotonically decaying values of  the functional (2.2). 

The values of  ,y(k) are calculated from recurrence formulas 

e.)~,c~> =/,~ + c,j,,§247 = c~,a,,~§ 1, 

E~k)Y (~') = "fN-k*i --  C~r @-I), Eck) = Etk-t)  + aN-k§ + 2bN-k+l + CN-k+J' 
k =  2 , 3  . . . . .  N -  1. 

303 



If the limitation (2.8) is not intro.duced, the array of the 7(k) (k = 1, 2 . . . .  N - 1) are formed, and then the ui(N-D 

are calculated from the formulas 

uc,~-~) 0, u[ "-1) u~"[ 1> + r ~'§176 t = 2, N,  l ~ "~" -- " '~  

/ [  , ( N - l ) x . . i - I  ,/N-l) = --(f,v+l + -~"N )%v.r 
- - N + I  

The resultant ui (N-t) are used for the fii, and the quantities 'Pi are replaced by @i + fii; then the subsequent iterations are 

calculated. 
In this case the limitation (2.8) can be formulated in the form 

I r~ '>l  ~< ~, e = A / N .  (4.3) 

In a calculation with the limitation (4.3), the ui(k-1) are used for the Ili, where k is the number at which the condition (4.3) is 

no longer fulfilled. The values of  the ui (k'1) are calculated from the formulas 

u~ k-l) = 0, k = 1 ,2  . . . . .  N +  1 - k, 

/ /(k-1}i = Ui- l"  Ck- l )  "l" 7 ( N + I - D ,  i ~-~ N + 2 - k, ..., N, 
, / . (k - l )  / ]  . ( k - 1 } x . l - I  

~+t = - ( / ~ + t  + -N"~  ) ~ N . r  

5. RESULTS OF N U M E R I C A L  EXPERIMENTS 

Numerical experiments were conducted in which the above algorithms were used to calculate equilibrium shapes. Here 

we examined various undeformed rod shapes, various initial approximations, various numbers of  elements N, and various 

values of e in the limitations (3.11) and (4.3). The calculations were done in terms of the dimensionless quantities 

-s = s / l ,  F = FI2/D,  -H = H l a l D ,  p = p l 3 / D ,  
w = q J t l D ,  x = x / l ,  ~ = y / t .  

Several typical results are shown in Fig. 2 and Table 1. 
Figure 2 shows equilibrium shapes of  an elastic rod (curves 4-6) acted on by a vertical force I:I = - 4 0  at the end of 

the rod g = 1; the shape of the rod in the undeformed state is given by ~o = r /2  - 3~r~. The end of  the rod ~ = 0 is 

restrained. The bending moment is zero at ~ = 1. Many different numerical experiments established that there are evidently 

no other equilibrium shapes of  this rod with I~ = - 4 0 .  
The dashed curves 1-3 in Fig. 2 correspond to rod shapes described by ~o = ~r/2 - 7r~, ~ = r /2 ,  and ~p = 7r/2 + 7r~, 

which were used as initial approximations. The arrows show the transformation of the initial approximations into the 

corresponding equilibrium shapes in calculations with N = 120 and e = 108, 0.5, and 0.1; the numbers in parentheses are the 

number of  iterations after which the fourth digit after the decimal for the values of the functional (1.7) and the coordinates of 

the rod end cease to change. After 7-8 iterations, the errors in the energy functional and in the coordinate of  the rod end were 

on the order of  10%. 

In calculations with e = 0.1, the functional (1.7) decreased monotonically for all iterations starting with the first; those 

with e = 108 and 0.5 decreased monotonically only after several iterations. 

Table 1 shows values of  the functional (1.7) and (in parentheses) the coordinate of  the rod end ~ = 1 for N = 40, 80, 

and 120. These values almost coincide. The number of iterations required to obtain the equilibrium shapes is also almost 
independent of  N. 

The authors express their thanks to the D. Sorosa Fund for material support of  their work. 
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